7 research outputs found

    Synthesis, characterization and catalytic activity of Cu(II), Co(II), Ni(II), Mn(II) and Fe(III) complexes of 4-((3-formyl-4-hydroxyphenyl)diazenyl)-N-(4-methyloxazol-2-yl) benzenesulfonamide

    Get PDF
    The sulfonamide derivative, 4-((3-formyl-4-hydroxyphenyl)diazenyl)-N-(4-methyloxazol-2-yl) benzenesulfonamide (FDMB), was synthesized and characterized. Additionally, its Cu(II), Co(II), Ni(II), Mn(II) and Fe(III) complexes were prepared and their structures were investigated by elemental analysis, thermal analysis and (IR, electronic and EPR) spectroscopy. The mode of binding indicates that the ligand binds to the metal ion through carbonyl oxygen and OH phenolic with displacement of its proton. The Co(II) complex was applied for the hydrolysis of nerve agent-like compound, bis-(p-nitrophenyl) phosphate (BNPP). The results showed a significant rate enhancement of 2.5 million fold with respect to the auto-hydrolysis of BNPP under the same conditions

    Comparative Proteomics and Genome-Wide Druggability Analyses Prioritized Promising Therapeutic Targets against Drug-Resistant <i>Leishmania tropica</i>

    No full text
    Leishmania tropica is a tropical parasite causing cutaneous leishmaniasis (CL) in humans. Leishmaniasis is a serious public health threat, affecting an estimated 350 million people in 98 countries. The global rise in antileishmanial drug resistance has triggered the need to explore novel therapeutic strategies against this parasite. In the present study, we utilized the recently available multidrug resistant L. tropica strain proteome data repository to identify alternative therapeutic drug targets based on comparative subtractive proteomic and druggability analyses. Additionally, small drug-like compounds were scanned against novel targets based on virtual screening and ADME profiling. The analysis unveiled 496 essential cellular proteins of L. tropica that were nonhomologous to the human proteome set. The druggability analyses prioritized nine parasite-specific druggable proteins essential for the parasite’s basic cellular survival, growth, and virulence. These prioritized proteins were identified to have appropriate binding pockets to anchor small drug-like compounds. Among these, UDPase and PCNA were prioritized as the top-ranked druggable proteins. The pharmacophore-based virtual screening and ADME profiling predicted MolPort-000-730-162 and MolPort-020-232-354 as the top hit drug-like compounds from the Pharmit resource to inhibit L. tropica UDPase and PCNA, respectively. The alternative drug targets and drug-like molecules predicted in the current study lay the groundwork for developing novel antileishmanial therapies

    Overview of MXene/conducting polymer composites for supercapacitors

    No full text
    Both MXene and conducting polymers are hot research topics on electrode materials for supercapacitors (SCs). The combination of these two different types of materials can solve the defects that exist when they are used as electrode materials alone. Based on theoretical capacity, specific surface area, mass load, flexibility and excellent mechanical properties, MXene/conducting polymers composites demonstrate their potential to become advanced electrode materials. In order to further illustrate the changes brought about by these composites, a large number of examples of MXene/conducting polymers as electrodes are described in details. In general, this review covers the latest developments in the study of SCs based on MXene/conducting polymers composites, including materials preparation, electrode materials, symmetrical supercapacitors (SSCs) and asymmetrical supercapacitors (ASCs). This article aims to understand the application of MXene/conducting polymers composites in the research of SCs, and provides a guideline for further research of these promising materials

    Recent Advancement in Drug Design and Discovery of Pyrazole Biomolecules as Cancer and Inflammation Therapeutics

    Get PDF
    Pyrazole, an important pharmacophore and a privileged scaffold of immense significance, is a five-membered heterocyclic moiety with an extensive therapeutic profile, viz., anti-inflammatory, anti-microbial, anti-anxiety, anticancer, analgesic, antipyretic, etc. Due to the expansion of pyrazolecent red pharmacological molecules at a quicker pace, there is an urgent need to put emphasis on recent literature with hitherto available information to recognize the status of this scaffold for pharmaceutical research. The reported potential pyrazole-containing compounds are highlighted in the manuscript for the treatment of cancer and inflammation, and the results are mentioned in % inhibition of inflammation, % growth inhibition, IC50, etc. Pyrazole is an important heterocyclic moiety with a strong pharmacological profile, which may act as an important pharmacophore for the drug discovery process. In the struggle to cultivate suitable anti-inflammatory and anticancer agents, chemists have now focused on pyrazole biomolecules. This review conceals the recent expansion of pyrazole biomolecules as anti-inflammatory and anticancer agents with an aim to provide better correlation among different research going around the world

    The Therapeutic and Prophylactic Potential of Quercetin against COVID-19: An Outlook on the Clinical Studies, Inventive Compositions, and Patent Literature

    No full text
    Quercetin is a phenolic flavonol compound with established antioxidant, anti-inflammatory, and immuno-stimulant properties. Recent studies demonstrate the potential of quercetin against COVID-19. This article highlighted the prophylactic/therapeutic potential of quercetin against COVID-19 in view of its clinical studies, inventions, and patents. The literature for the subject matter was collected utilizing different databases, including PubMed, Sci-Finder, Espacenet, Patentscope, and USPTO. Clinical studies expose the potential of quercetin monotherapy, and also its combination therapy with other compounds, including zinc, vitamin C, curcumin, vitamin D3, masitinib, hydroxychloroquine, azithromycin, and ivermectin. The patent literature also examines claims that quercetin containing nutraceuticals, pharmaceuticals, and dietary supplements, alone or in combination with other drugs/compounds, including favipiravir, remdesivir, molnupiravir, navitoclax, dasatinib, disulfiram, rucaparib, tamarixin, iota-carrageenan, and various herbal extracts (aloe, poria, rosemary, and sphagnum) has potential for use against COVID-19. The literature reveals that quercetin exhibits anti-COVID-19 activity because of its inhibitory effect on the expression of the human ACE2 receptors and the enzymes of SARS-CoV-2 (MPro, PLPro, and RdRp). The USFDA designated quercetin as a &ldquo;Generally Recognized as Safe&rdquo; substance for use in the food and beverage industries. It is also an inexpensive and readily available compound. These facts increase the possibility and foreseeability of making novel and economical drug combinations containing quercetin to prevent/treat COVID-19. Quercetin is an acidic compound and shows metabolic interaction with some antivirals, antibiotics, and anti-inflammatory agents. Therefore, the physicochemical and metabolic drug interactions between quercetin and the combined drugs/compounds must be better understood before developing new compositions

    Overview of MXene and conducting polymer matrix composites for electromagnetic wave absorption

    No full text
    With the rapidly developing wireless communication technology, electromagnetic pollution problems have become more prominent. Electromagnetic pollution has caused great harm to wireless equipment, precision instruments, military safety, etc., which urgently requires the development of lightweight, high-efficiency, broadband electromagnetic waves (EMW) absorbing materials. MXene is an emerging two-dimensional (2D) material with the advantages of lamellar structure, excellent conductivity, and abundant surface groups. At the same time, conducting polymers (CPs) have excellent performance in terms of conductivity, surface activity, quality, and electromagnetic loss, making them have excellent potential in EMW absorbing direction. This article examines the preparation, structure, and performance of MXene and CPs-based radar absorbing materials (RAM). A comprehensive summary and objective analysis of the nowaday study progress on the EMW absorbing performances of MXene and CPs, and a comprehension of the absorbing mechanism are reviewed. Finally, the research direction of absorbing materials has been prospected
    corecore